
PREDICTION OF COMPLEX
TRAITS WITH 

KERNEL METHODS

RKHS
(largely non-parametric)



PARAMETRIC APPROACHES



(WELCOME TO THE WORLD OF ABSTRACTIONS))



THE CENTRAL DOGMA OF QUANTITATIVE 
GENETICS:

the additive genetic model

Genome

+ + + = ‘additive genetic value’

GOOD PHENOTYPE

BAD PHENOTYPE



A few 
complications….



Dealing with epistatic interactions 
and non-linearities

gene x gene
gene x gene x gene

gene x gene x gene x gene



7
PNAS, 2012





• UPPER LIMIT PLACED ON VARIANCE COMPONENTS FOR
DISCOVERY PURPOSES: EVERYTHING TURNS ADDITIVE EVEN IF NOT SO…

• ADDITIVE MODEL DENIES WHAT IT IS AND EXPLAINS WHAT IT IS NOT!
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Distinctive aspects of non-parametric 
fitting

• Investigate patterns free of strictures imposed by 
parametric models

• Regression coefficients appear but (typically) do not 
have an obvious interpretation

• Often: very good predictive performance in cross-
validation

• Tuning methods and algorithms (maximization, 
MCMC) similar to those of parametric methods

• Often produce surprising results



Logistic regression with thin-plate splines

Risk of heart attack after 19 years as a function of cholesterol level and blood pressure. 
Left: logistic regression model. Right: thin plate spline fit. Wahba (2007)
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SOME PREDICTION MACHINES.
YOU HAVE HEARD OF:

• BLUP using pedigrees
• BLUP using markers (GBLUP)
• Support vector machines in regression or 

classification?
• Kriging in geostatistics
• Kernel machines in computer science
THESE METHODS ARE SPECIAL CASES 

OF A GENERAL FRAMEWORK: RKHS

(Reproducing kernel Hilbert spaces methodology)
Sounds scary…



“And at the beginning there was light…”







Reproducing Kernel Hilbert spaces mixed 
model regression

“Penalized sum of squares”                 Norm under 
Hilbert space (H) of 
functions, a huge class

Variational problem: find g(x) over entire space of functions minimizing SS(.)

Function of molecular information x (e.g., vector of SNPs)

SSgx,  ∑
i1

n
yi − wi

′ − zi
′u − gxi  ||gx||H

2 2

parametric non-parametric



g.  0 ∑
j1

n

jK. , xj 

1) Solution to variational problem: linear function (Kimeldorf & Wahba, 1971)

Reproducing kernel
(may contain bandwidth
parameters)

No. individuals with
molecular data

Regression coefficient

reduction of dimension
p (# SNPs) # indiv.

2) Model becomes



KERNEL CONSTRUCTION: 
MAIN ISUES

-KERNEL MUST BE AN n x n SYMMETRIC PSD MATRIX

-NOTION OF DISTANCE (“similarity”) BETWEEN GENOTYPES
OF PAIRS OF INDIVIDUAL

-MATHEMATICAL FORM (LINEAR OR NON-LINEAR 
TRANSFORMATION OF INPUTS: THE MARKER CODES)



EXAMPLES OF MEASURES OF DISTANCE 
(marker genotypes in pairs of individuals

THAT CAN BE USED IN KERNELS
Euclidean

Manhattan

Bray-Curtis

Distances must meet
triangle inequality



EXAMPLES OF MATHEMATICAL FORMS OF KERNELS

Khx, xj  exp − x−xj 
′x−xj 
h

Standard (no bandwidth)

Gaussian

“bandwidth”

Gaussian on 
relationships 

t-kernel

m= #markers
ν =bandwidth Bandwidth parameter



Possible alternatives for t-kernel for an S x 1 vector of markers

−1  Diag2pkqk ,
  Diag2pkqk 

−1  R where R is a matrix containing r2 from LD
  R

k,xi,xj  1 
xi−xj

′∑−1
xi−xj

S

− 1
2

Bandwidth parameter
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GAUSSIAN KERNEL WITH 3 BANDWIDTHS

Histograms of the entries of K={K(xi, xi’)}, . 

LOCAL
KERNEL
(sharp)

GLOBAL 
KERNEL
(intermediate)

GLOBAL
KERNEL
(“fat”)



   ijdkjiK 1 exp,  

2

jiijd xx 

  ipii xx ,...,1x

 
   max

2

, jiji
k xx 

.
Histogram of evaluations of Gaussian kernel  by value of bandwidth parameter

LOCAL KERNELKERNEL GENERATING
STRONG COVARIANCES

“Excessively” sharp kernels approach I (n x n) and may copy noise, 
plus pose identification problem (variance component issue)



yi  wi
′  zi

′u ∑
j1

n

exp − xi−x j 
′xi−xj 
h  j  ei

Mixed model representation of a semi-parametric regression

ti
′h  exp − xi−x j 

′xi−xj 
h

Define row vector

Gaussian kernel on markers used

(K is n x n and symmetric
so K=K’)

nuisances

Infinitesimal additive effect

Type	equation	here.

′



y  W  Zu  Th  e

Do:

Then:

h assumed known here

W ′W W ′Z W ′Th

Z′W Z′Z  A−1 e
2

u
2 Z′Th

T′hW T′hZ T′hTh  Th e
2

2



u




W′y
Z′y

T′hy

  N0, T−1h2 



12 

Bandwidth parameter

Smoothing
parameter

(sorry, I discovered that I had used T instead of K)



THE  “ANIMAL MODEL” IS A PARTICULAR CASE OF RKHS

Use A as kernel matrix

y  A  e

  N0,A−1a
2 

e  N0, Ie
2 

 u  A  N0,Aa
2 

A ′A  A e
2

a
2

  A ′y

A A  Ie
2

a
2

  Ay

  A  Ie
2

a
2

−1

y

A  I  A−1 e
2

a
2

−1

y  BLUP(additive effects)Predicted Genetic signal



GENOMIC BLUP IS A PARTICULAR CASE OF RKHS

y  XX ′  e

  N 0, XX ′ −1
2

e  N0, Ie
2 

 u  XX ′  N0,XX ′
2 

XX ′XX ′  XX ′ e
2


2

  XX ′y

XX ′  XX ′  Ie
2


2

  XX ′y

  XX ′  Ie
2


2

−1

y

XX ′  XX ′ XX ′  Ie
2


2

−1

y

I  XX ′ −1 e
2


2

−1

y  "GENOMIC BLUP"

Predicted Genetic signal



Penalized estimation

          minargˆ KααKαyKαyα
α

 

[1] Kimeldorf, G.S. & Wahba, G. (1970).
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Bayesian or REML View

Place priors, if Bayesian



How to Choose the Reproducing Kernel? [1]

Theory-derived Kernel

Predictive Approach 

 ji ttK ,

 Pedigree-models K=A

 Genomic Models:

- Marker-based kinship

- XXK 

Explore a wide variety of kernels

=> Cross-validation

=> Bayesian methods
[1] Shawne-Taylor and Cristianini (2004)



Example of multiple-kernel fitting: 4 Gaussians simultaneously

     4,3,2,1;  ,  ,  kdExpjiK jik xx

de los Campos et al. (2010) Genetics Research

 
sindividualbetween  distance (genetic)

   : ,                  jid xx

Operationally

Global: similarity even when distant

Sharp: similarity only if close



FAQ 1
• Why can RKHS capture 

(potentially) epistasis even 
when K encodes additive 
marker codes only?



EXAMPLE: 2 LOCUS MODEL WITH EPISTASIS

Effect of allelic 
substitution at locus 1 
depends on locus 2

Effect of allelic substitution at locus j depends on ALL other loci
Form of epistasis not represented by linear models

EXAMPLE: RKHS WITH GAUSSIAN KERNEL



FAQ 2
• Can RKHS produce an “estimated breeding 

value”?



• Suppose I construct additive + dominance 
genomic relationship matrices (kernels) and 
additive x dominance (another kernel) as:

• G(add)
• G(dom)

• G(add) # G(dom)
Do I obtain meaningful estimates of additive, 

dominance and additive x dominance 
variances?

FAQ 3



Morota et al. (2014)



ANSWER: NO! KERNELS MUST BE MUTUALLY ORTHOGONAL

Orthogonality destroyed by LD

Gets worse with increased # SNP

Corollary: do not take seriously claims
of “dominance” and “epistatic” variance
from naively constructed genomic 
relationship matrices.



Example 1 of RKHS 
y2  5
y3  3
y4  7
y5  8
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Application of BLUP paradigm leads to



′
 5. 145 0.241 ,

a ′  0. 045 −0.192 −0.343 0. 096 0.242 ,

d
′
 0 −0. 073 −0.365 0. 162 0.234 .

g  a 

d  0. 045 −0. 265 −0. 708 0. 259 0. 477
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Next, do RKHS with K=A+D as positive-definite kernel matrix
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2  a

2  d
2  9  This is 1/λ


0  5. 289


1  0.200 2  −0.128 3  −0.781 4  0.487 5  0.422
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PREDICTING FUTURE RECORDS UNDER THE SAME ENVIRONMENTAL
CONDITIONS; PARAMETRICALLY

gK,1
gK,2
gK,3
gK,4
gK,5



0.036
−0.210
−0.569
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0.382

COMPARED WITH 
g  a 


d  0.045 −0.265 −0.708 0.259 0.477
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PREDICTION OF FUTURE RECORDS NON-PARAMETRICALLY

y1
f

y2
f

y3
f

y4
f

y5
f

|

y2

y3

y4

y5

,dispersion (smoothing) parameters

 M .. , M .C .
−1M .

′  If e
2 ,

FOR BOTH APPROACHES THE PREDICTIVE DISTRIBUTION IS



P 

5. 674  6. 020
5. 364  5. 460
5. 162  5. 353
5. 646  5. 834
6. 828  6. 115

; K 

5. 754  5. 576
5. 286  5. 659
4. 735  5. 561
5. 919  5. 940
7. 061  6. 157

For the two procedures the mean and SD of the predictive distributions are:



Example 2 of RKHS 
Drawn from 
exponential distribution

Drawn from 
Weibull distribution



Arbitrary Gaussian kernel adopted for the RKHS regression
using as covariate a 2  1 vector: number of alleles at each of the two loci,
e.g., xAA  2,xAa  1 and xaa  0. For example, the kernel entry AABB and AAbb is

kxAABB,xAAbb ,h  exp − 2 − 22  2 − 02

h  exp − 4
h ,
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h  1.75 as bandwidth parameter
6 unique entries in the K matrix:
1.0 (diagonal elements, the two individuals have identical genotypes)
0.565 (3 alleles in common in a pair of individuals)
0.319 (2 alleles in common, 1 per locus)
0.102 (2 alleles in common at only one locus)
0.06 (1 allele in common)
0.01 (no alleles shared).



Training set

Testing set
100

IMPORTANT ISSUE TO DISCUSS HERE



TRAINING
SET





TESTING
SET



Explanation of results

!!



Example 3 of RKHS 



Source DF Anova SS Mean Square F Value    Pr > F

a                              2       0.00000000      0.00000000       0.00    1.0000
b                              2       0.00000000      0.00000000       0.00    1.0000
c                              2       0.00000000      0.00000000       0.00    1.0000
a*b                          4       0.00000000      0.00000000       0.00    1.0000
a*c                          4       0.00000000      0.00000000       0.00    1.0000
b*c                          4     13.33333333      3.33333333       1.00    0.4609

Error (a*b*c)           8      26.66666667      3.33333333                     

Variation between genotypic values is pure interaction!!!



Training set:
- 27 genotypes, 

- 5 replicates per genotype, 
- residual variance 1.5

Testing set: 50 MC replicates, each as the training set.

Results in training set





Results testing set.



FIRST APPLICATION OF RKHS IN 
ANIMAL BREEDING



• Average progeny “late mortality” (lm) in low 
hygiene environment for 200 sires of line29 
(12,167 progenies).

– Pre-corrected for hatch, age of dam and dam,
– Standardized log-transformed means

• SNPs: filter and wrapper strategy (Long et al., 
2007) 

– 24 SNPs selected out of over 5000 genotyped on 
sires

59



MODELS

PEDIGREE SNPs

Bayesian
E-BLUP

OLS
24 SNPsParametric 

(linear) method

Non-Parametric RKHS
24 SNPs

Kernel
Regression
24 SNPs

60

Bayes A
1000 SNPs
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Sequence alignment KERNEL

Dynamic programming algorithms

Similarity between two DNA sequences

Adapted to SNP sequences

No need to tune h

(Delcher et al., 1999, 2002)

 )(exp)( iih ScoreK xxxx 



• Spearman (above diagonal) and Pearson
correlations (below diagonal) between
posterior means of sire effects

• E-BLUP & Bayes A very similar.
• LR most different ranking.

62

E-BLUP F-metric Kernel RKHS BR

E-BLUP
… 0.52 0.77 0.84 0.91

F-metric 0.56 0.48 0.51 0.53

Kernel 0.66 0.38 … 0.93 0.76

RKHS 0.84 0.50 0.79 … 0.84

BR 0.92 0.57 0.58 0.80 …



MODEL FIT
•Regression of adjusted raw progeny LM on sire’s 
PTA or EGV 
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MODEL FIT
•Less dispersion in non-parametric models

•Lower MSE for kernel regression

•Worst for Linear regression (F-metric model)

Still….which model predicts the data best ?

64



Predictive ability
• Cross validation

1. 5 subsets, letting 20% sire means missing 
each time at random

2. Calculate correlations between actual and 
inferred average progeny, for each method 
within subset.

65



Predictive ability

•RKHS showed better predictive ability
–25% higher reliability than Xu’s method
–100% higher reliability than E-BLUP
–233% higher reliability than F-metric (linear regression on markers)

•RKHS better than fixed or random regression on markers and E-BLUP.66

Subset E-BLUP F-metric Kernel RKHS BR

1st

0.03 0.27 0.05 0.27 0.13

2nd

0.18 0.19 0.28 0.37 0.12

3rd
0.18 0.08 0.06 -0.01 0.17

4th
-0.04 0.07 0.13 0.28 0.15

5th
0.17 -0.12 0.23 0.15 0.25

GLOBAL 0.10 0.06 0.14 0.20 0.16



APPLICATION TO
FEED CONVERSION IN CHICKENS



FCR measured on progeny of 333 sires with 3481 SNPs
FCR measured on progeny of 61 birds (sons of the above sires)

2- generation data set

BAYES A        --all markers
RKHS              --all markers
RKHS              --400 markers filtered using different INFOGAINS
BLUP (Bayes) –pedigree information

Training set:        333 sires of sons

Predictive set:       61 sons of sires



“BLUP”

“Bayes A” RKHS
“winner”



FIRST APPLICATION IN PLANTS

Predictive ability of models for 

genomic selection in Wheat [1]

[1]  Crossa et al. (2010) Genetics.

 Predictive Correlation 
Environment BL RKHS 

 
Difference 

(%) 
E1 0.518 0.601 +16% 
E2 0.493 0.494 0% 
E3 0.403 0.445 +10% 
E4 0.457 0.524 +15% 

 N= 599; 

Trait: Grain Yield (4 environments); 

Models: RKHS and Bayesian LASSO (BL)



SOME RECENT CASE 
STUDIES

WITH RKHS
(some excitement from plant breeding)



G3 2014

SIMULATED F2 POPULATIONS PLANT BREEDING

EXTREME ARCHITECTURES:

1. Completely additive : 10 ch-2 QTL/ch- 2000 markers

2. Completely epistatic : 10 ch-2 QTL/ch- 2000 markers
10 A X A epistatic interactions



Minor differences save for least-squares and NW

Minor differences save for least-squares and NW





PEREZ et al. (2012, G3): wheat



DOES MODEL AVERAGING HELP?
(in theory, MA expected
to improve predictions)

Line A
2,598 PB
46,855 SNPs



RKHS‐KA‐MA
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RKHS‐KERNEL AVERAGING‐MODEL AVERAGING 
•For 3 bandwidths in Gaussian kernels, fitted:

1 :  RKHS with K1
2 :  RKHS with K2
3 :  RKHS with  K3
4 :  RKHS-KA with K1, K2
5 :  RKHS-KA with K1, K3
6 :  RKHS-KA with K2, K3
7 : RKHS- KA with K1, K2, K3
8 : Average of predictions from models 1 to 7
8*: Weighted average from model 1 to 7 according to harmonic mean of  



  )( iMplog y

LOCAL
KERNEL
(sharp)

GLOBAL 
KERNEL
(intermediate)

GLOBAL
KERNEL
(“fat”)

Multi-kernel: Histograms of entries of K={K(xi, xi’)}



RKHS‐KA‐MA
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Continued... 

-50 random partitions: 90% of observations in training and 10% in testing 
-Correlations between observed and predicted litter sizes

Distribution of correlations between observed and predicted phenotypes. 

MULTI-KERNEL PREDICTIONS NOT WORSE THAN BMA; NOISY DATA

1-3   Single kernel
4-7  “multi-kernel”
8 Model averaging
8*     Averaging using

PMSE in a validation set,
followed by testing

9      BMA



Tests: Friedman’s non-parametric test for paired comparisons



PICTURE: Results suggest that model averaging is slightly better than
multi-kernel fitting in crossbreds (dominance?)   but the extra work is not 
justified in purebreds. Anyhow, results are not clear cut.



Comparison among methods: plants 
(Heslot et al., 2012. Crop Science)





WHISKY SECRETS:

-Replicate comparisons
-Use paired comparisons 

(smaller variance of 
differences)
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RKHS vs RR-BLUP: 
18 comparisons of Heslot et al. (1982)

RR-BLUP

R
KH

S

RR-BLUP defeated

RKHS

RR-
BLUP
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RKHS vs Bayes C-pi: 
18 comparisons of Heslot et al. (2012)

Bayes C=pi

R
K

H
S

Exact binomial test
Number of successes = 16, number of trials = 18
p-value = 0.001 (test of H0: Pr(success)=0.5)

Alternative hypothesis:  

Pr(success)=0.89
95 % confidence interval:
(0.65, 0.99) 

Bayes C-pi DEFEATED



FURTHER DOWN THE 
ROAD



ADDITIVE, DOMINANCE AND ADDITIVE X DOMINANCE GAUSSIAN KERNELS
(FOR A X A: square kernel elements for A; for A X D: multiply kernel elements)

ADDITIVE KERNELS ARE NOT THE ONLY POSSIBILITIES!!!







KERNELS WITH DIFFERENTIAL WEIGHTS TO SNPs





REFINING THE 
INFORMATION FROM 

MARKERS











The Plant Genome 2016









Introducing Highly Dimensional Genomic and Environmental Covariate Data 
into Models for Prediction of Complex Traits 

[ACTUALLY A RKHS]

Jarquín et al. (Theoretical and Applied Genetics, 2014)

Effects of genes on traits modulated by environmental conditions (EC): G×E.

Model main and interaction effects of large numbers of markers and of many ECs using co-variance
functions. Random effects: all markers, all the ECs and all interactions between markers and ECs.

139 wheat lines genotyped with 3,548 SNPs evaluated over 8 years and various locations in 
northern France. 130 ECs defined

Prediction accuracy of models with G X E higher (20%) than main effects only models

Capitalize on genomic and environmental information available

ENVIRONMENTOMICS



LARSON & SCHAID (2013, Genet. Epidemiol.)
CHEN ET AL. (2012, Genet. Epidemiol.)
SCHIFANO ET AL. (2012,  Genet. Epidemiol: pre-select SNP sets and 
test significance of set variance)
HE ET AL. (2012,  Genetica)
HAN (2010, Genet. Epidemiology)
SCHAID ET AL. (2010, Human Heredity)
MUKHOPADHYAY ET AL. (2010, TESTS, Genet. Epidemiology)
PAN (2009 , Genet. Epidemiology, tests)
TENG ET AL. (2009, SIMILARITY METHODS, Biometrics)
KWEE ET AL. (2008, Am J. Human Genetics, tests)
LIU et al. (2007, 2008, Biometrics, BMC Bioinformatics)  

KAGEWASO!!

KERNEL- ASSISTED GENOME WIDE ASSOCIATION STUDY



y  K  e
V  KVarK  Ie

2

 K2  Ie
2

l2 ,e
2  |V|−

1
2 exp − y′V−1y

22

Use score test for "significance"

Liu et al. (2007) and Schifano et al. (2012) use SNPs in some pathway and put
these into a kernel.  Then one has a random effects model (recall that α has zero mean)

If “significant”, then use SNPs in pathways for doing something, e.g., a genetic test

PROBLEM: a complex trait is probably affected by ALL pathways.
An option might be a Multi-pathway KAGEWASO!



SEQUENCE INFORMATION?
• p/n ratio will go from 50 to 1000-2000 
• “All causal mutations there” (Gurus et al., many 

papers)
• Bayesian alphabet may collapse computationally
• Regression coefficients will be tiny, effectively 

infinitesimal (can still predict signal, though)
• Advantage of  n X n methods?
• “Neo-systems approach”: not very useful in absence 

of rate coefficients. 
• Pigs do not fly (yet)



Remarks
• Inference and prediction: connected but 

different.
• Kernel based methods attractive not only for 

prediction but for more properly conducting 
GWAS.

• Many GWAS will be “GWASHED” away.
• Challenges  to parametric methods posed by 

genomic and post-genomic data.
• Future: analytical shift? Semi-parametric and 

“machine learning” type techniques? 


